AN EFFICIENT SYNTHESIS OF (R)-(+)- AND (S)-(-)-PROPRANOLOL FROM RESOLVED 5-IODOMETHYLOXAZO-LIDIN-2-ONES

Giuliana Cardillo *, Mario Orena, Sergio Sandri *, Claudia Tomasini

Centro per lo studio della Fisica delle Macromolecole del C.N.R. Dipartimento di Chimica - Università di Bologna Via Selmi 2, 40126 BOLOGNA, Italy

(Received in UK 6 April 1987)

<u>Abstract</u> $(1'S^*,5S,R)-3-(1'-phenyleth-1'-yl)-5-iodomethyloxazolidin-2-ones, <u>4a,b</u>, have been synthesized and easily resolved by silica gel chromatography. Each pure diastereomer has been then converted to <math>(S)-(-)$ -propranolol <u>1a</u> and (R)-(+)-propranolol <u>1b</u>, respectively. An empirical correlation of configuration and H NMR chemical shift for alternate diastereomers has been devised and has proved to be applicable in assigning the configuration of 5-substituted 3-(1'-phenyleth-1'-yl)oxazolidin-2-ones.

In a previous study ¹ the growing importance of aminoalcohols in organic synthesis, due to the presence of this moiety in many biologically active compounds, prompted us to realize the synthesis of (5R,S)-5-(iodomethyl)oxazolidin-2-ones through the iodocyclofunctionalization of allylic amines, in order to easily obtain 3-amino-1,2-diols and aminoalcohols.

In this paper we report an efficient resolution ² of the diastereomeric mixture of $(1S^{*}, 5S, R)$ -3-(1'-phenyleth-1'-yl)-5-(iodomethyl)oxazolidin-2-ones <u>4a,b</u>, utilizing the commercially available (S)-1-phenylethylamine as the optically active portion of the molecule.³ These intermediates are successively converted into the pure (S)-(-)-propranolol <u>1a</u> and (R)-(+)-propranolol <u>1b</u>.

In addition we develop a conformational model that allows the attribution of the configuration of the newly introduced stereogenic center on the basis of the chemical shifts in the ¹H NMR spectra of the diastereomeric oxazolidin-2-ones. The (S)-N-(1-phenyleth-1-y1)-N-(2-propen-1-y1)amine hydrobromide <u>2</u>, obtained in 80% yield from $(S)-1-phenylethylamine and 3-bromo-1-propene, is treated in CHCl₃ at room temperature with two equivalents of I₂ adsorbed on Amberlyst A 26 in the CO₃⁻⁻ form to afford in good yield a 1:1 diastereomeric mixture of <math>(1'S^*, 5S, R)-3-(1'-phenyleth-1'-y1)-5-(io-domethyl)oxazolidin-2-ones <u>4a,b</u>, as determined by ¹³C NMR spectrum and g.l.c. analysis of the reaction mixture. In an alternative pathway the chiral allylic amine is converted to the$

reaction mixture. In an alternative pathway the chiral allylic amine is converted to the corresponding N-benzyloxycarbonyl derivative 3, that is successively cyclized with I_2 in CHCl₃.⁴ An easy and complete separation of the diastereomeric mixture is reached by chromatography on silica gel, and pure <u>4a</u> ($R_f = 0.5$) and <u>4b</u> ($R_f = 0.37$) are obtained with hexane:ethyl acetate 80:20.

a. Amberlyst A 26 in the $CO_3^{-/1}_2$ form, MeOH b. $C_6^{H}_5C1_2$ COCC1 c. I_2 , CHCl₃ d. silica gel chromatography

By displacement of iodine on pure <u>4a</u> or <u>4b</u>, performed with Amberlyst A 26 in the AcO⁻ form in refluxing benzene, the acetoxy derivatives <u>5a</u> or <u>5b</u> are isolated in good yield. Successive basic hydrolysis with dry K_2CO_3 in ethanol affords the alcohols <u>6a</u> or <u>6b</u>. Reductive cleavage of C-N bond ⁵ of each diastereomer <u>6a</u> and <u>6b</u> with Li/NH₃ gives 5-(hydroxymethyl)oxazolidin-2-ones <u>8a</u> or <u>8b</u>, that are converted to the corresponding methanesulfonate esters <u>9a</u> or <u>9b</u>. The methanesulfonyl group is then substituted by the naphtholate anion supported on the resin Amberlyst A 26 and the derivatives <u>10a</u> or <u>10b</u> are obtained in good yield. The cleavage of the heterocyclic ring is then performed with LiOH/H₂O/MeOH at reflux to give the aminodiols <u>11a</u> or <u>11b</u>. The isopropyl group is eventually introduced by treating an ethanolic solution of <u>11a</u> or <u>11b</u> with acetone, followed by reductive cleavage of the oxazolidine with NaBH₄: ⁶ (S)-(-)-propranolol <u>1a</u> or (R)-(+)-propranolol <u>1b</u> are obtained, whose absolute configuration at C-2 is assigned from comparison of the optical rotations to the values of the known compounds.⁷

a. Amberlyst A 26 in the Aco⁻ form, refluxing benzene b.K₂CO₃, EtOH c. Li/NH₃ d. CH₃SO₂Cl, pyridine, CH₂Cl₂ e. Amberlyst A 26 in the α -naphtholate form, benzene f. LiOH, H₂O, refluxing MeOH g. acetone, NaBH₄, EtOH

¹H NMR spectra of alternate diastereomeric 5-substituted oxazolidin-2-ones, the From the internal diastereotopic protons H and H are non-equivalent and ΔS in the (1'S*,5R)-series is always larger than in the (1'S*,5S)-series. The phenomenon of H NMR non-equivalence of internal or external diastereotopic groups is widely used to establish the enantiomeric purity of alcohols and amines through the preparation of diastereomeric derivatives. Dale and Mosher,⁸ and more recently Trost, y proposed a model for the mandelate esters, represented by a unique model for each diastereomer via an extended Newman projection where the substituent shielded by the phenyl ring is always upfield. On the basis of ¹H NMR chemical shifts, we propose a model for 5-substituted oxazolidin-2-ones that rationalizes the data given in Table 1 and satisfies the data for H and H $_{\rm h}$ and those for H and $CH_{2}X$, by considering the phenyl group and $CH_{2}X$ shieldings. In fact in the $(1^{S*}, 5S)$ -series H_n resonates at higher field than in the $(1^{S*}, 5R)$ -series, because of the shielding due to the CH₂X group. Moreover in the (1'S*,5R)-series H_b shows its proton shift upfield of H in the (1'S*,5S)-series, since it experiences shielding from both he phenyl ring and the CH X group.As a result of the phenyl group shielding, in the (1'S*,5S)-series, H, juxtaposed with the aromatic ring, resonates upfield in respect to H_c of the (1'S*,5R)-series, whereas the opposed pattern is observed for the CH2X protons. Hence our model provides an empirical correlation of extensive data, and allows to assign the absolute configuration at C-5 in the 3-(1'-phenyleth-l'-yl)oxazolidin-2-ones on the basis of the chemical shifts of H and H.

Table 1. "H HBAR chemical shifts correlation of (8",8")- and (8",R")-oxazolidin-2-ones

(8,8)-

(8",R")-

	°Ha		⁶ нь		⁶ н _с		[¢] сн ₂ х	
	(8 ,8*)-	(S;R*)-	(8;8')-	' (8',R')	(8*,5*)	(S;R*)-	(s;s'⊢) (8;R*)-
X = 1	3.25	3.65	3.25	2.9	4.4	4.6	3.3	3.2
X = OAc	3.25	3.6	3.25	2.9	4.8	4,65	4.2	41
x = 0H	3.4	3.5	3.15	3,0	4.4	4.55	3.7	3.6
x = ONephthyl	3.65	3.6	3.3	32	4.75	4.8	4.25	4.05

EXPERIMENTAL

Tetrahydrofuran (THF) was distilled from LAH immediately prior to use. All reactions involving organometallic reagents were conducted under argon atmosphere. Melting points (Pyrex capillary) were determined on a Buchi 510 hot stage apparatus and are uncorrected. IR spectra were determined with a Perkin-Elmer Model 682 infrared recording spectrophotometer. ¹H NMR spectra were determined on a Varian EM 390 (90 MHz) spectrometer. ¹³C NMR spectra were measured at 20 MHz with a Varian FT 80-A spectrometer. Chemical shifts are reported as δ units (ppm) relative to tetramethylsilane (Me_Si) as internal reference. Optical rotations were measured with a Perkin-Elmer 241 digital polarimeter at room temperature. Thin-layer chromatography was performed on silica gel HF₂₅₄ and column chromatography on silica gel 60 (Merck, 0.040-0.063 mesh). (S)-N-(1-Phenyleth-1-y1)-N-(prop-2-en-1-y1)amine_hydrobromide (2).

A mixture of (S)-1-phenylethylamine (20 mmol; 2.42 g) and 3-bromo-1-propene (2.9 g; 24 mmol) was stirred for 1 h at 0 °C. The resulting oil was chromatographed on silica gel using ethyl acetate:methanol (95:5) as the eluting solvent, to yield 3.85 g of (2) (80%) as white crystals: m.p. 154 °C; ¹H NMR (CDCl₃): δ 1.9 (d, 3H; J = 6 Hz), 3.15 - 3.8 (m, 2H), 4.45 (q, 1H; J = 6 Hz), 5.2 - 5.6 (m, 2H), 5.9 - 6.5 (m, 1H), 7.3 - 7.8 (m, 5ArH), 8.7 (bs, 2H, NH, HBr); ¹³C NMR (CDCl₂): δ 20.6, 47.5, 57.8, 124.1, 127.6, 128.2, 129.4, 135.5.

(S)-N-(1-Phenyleth-1-y1)-N-(prop-2-en-1-y1)-N-(benzyloxycarbonyl)amine (3)

To a solution of the hydrobromide (2) (4.82 g; 20 mmol) in 25 ml water:acetone (4:1) were added sequentially at 0 °C NaHCO₃ (3.36 g; 40 mmol) and benzyloxycarbonyl chloride (3.5 g; 22 mmol) in acetone (20 ml). After 1 h ether (200 ml) was added and the organic layer was washed with 10% aqueous NaHSO₄ (100 ml) and then with 10% aqueous Na₂CO₃ (100 ml), dried (Na₂SO₄) and concentrated in vacuo to give an oil which was purified by silica gel chromatography using cyclohexane:ethyl acetate (9:1) as the eluting solvent, to afford 5.55 g of (<u>3</u>) (96%) as a colorless oil; I.R. (neat) 1720 cm⁻¹; ¹H NMR (CDCl₃): δ 1.45 (d, 3H; J = 6Hz). 3.3 - 4.0 (m, 2H), 4.8 - 5.1 (m, 2H), 5.2 (s, 2H), 5.3 - 5.9 (m, 2H), 7.1 - 7.7 (m, 10ArH).

```
(1'S*,5S*,R*)-3-(1'-Phenyleth-1'-yl)-5-(iodomethyl)oxazolidin-2-one (4a,b)
```

<u>Method A</u> Amberlyst A 26 in the CO_3^{--} form (6 g;~3.8 mequiv/g) was added to a solution of I_2 (5.1 g; 20 mmol) in CHCl₃ (100 ml). After the suspension was slowly stirred until the colour disappeared, a solution of the hydrobromide (2) (2.41 g; 10 mmol) in CHCl₃ (20 ml) was added all at once and the reaction was stirred for 12 h at room temperature. The resin was filtered off and washed with methanol (30 ml); removal of the solvent in vacuo afforded in a quantitative yield a mixture 1:1 of diastereomers (<u>4a</u>) and (<u>4b</u>) as a yiellow oil.

<u>Method B</u> To a solution of $(\underline{3})$ (5.9 g; 20 mmol) in CHCl₃ (100 ml), I₂ (10 g; 40 mmol) was added at room temperature. After 5 h, the reaction was diluted with CHCl₃ (100 ml), the organic phase washed with 10% aqueous Na₂S₂O₃ (100 ml) and dried (Na₂SO₄). The solvent was then removed in vacuo to give a pure mixture 1:1 of diastereomers (<u>4a</u>) and (<u>4b</u>) in a quantitative yield. The separation of diastereomers was achieved by silica gel chromatography with cyclohexane:ethyl acetate (7:3) as the eluting solvent, to yield first the less polar (1'S*,5S*)-isomer (<u>4a</u>) (2.9 g; 44%) in pure form as an oil. Further elution gave the more polar $(1^{S}, 5R^{\bullet})$ -isomer (4b) in pure form (3.1 g; 46%) as white crystals.

(1'S*,5S*)-isomer (<u>4a</u>): $R_f = 0.5$ (cyclohexane:ethyl acetate 65:35); IR (neat) 1750 cm⁻¹; ¹H NMR (CDCl₃): $\dot{\delta}$ 1.6 (d, 3H; J = 7 Hz), 3.25 (m, 2H), 3.3 (m, 2H), 4.4 (m, 1H, H_c), 5.2 (q, 1H; J = 7 Hz), 7.3 (m, 5ArH); ¹³C NMR (CDCl₃): $\dot{\delta}$ 7.1, 15.9, 45.6, 51.2, 71.0, 126.5, 127.5, 128.3, 138.8, 156.1; α_p -11.8° (c = 5; CHCl₃).

 $(1^{S}, 5R^{\circ}) - isomer (4b): R_{f} = 0.37 (cyclohexane:ethyl acetate 65:35); m.p. 136 °C; IR (nujol): 1745 cm⁻¹; ¹H NNR (CDCl₃):$ **o**1.6 (d, 3H; J = 7 Hz), 2.9 (dd, 1H, H_b; J_{ab} = 9 Hz; J_{bc} = 6.5 Hz), 3.2 (m, 2H), 3.65 (t, 1H, H_i; J_{ab} = 9 Hz; J_{ac} = 9 Hz), 4.6 (m, 1H, H_c), 5.3 (q, 1H; J = 7 Hz), 7.3 (m, 5ArH); ¹³C NMR (CDCl₃):**o** $6.2, 16.1, 45.7, 51.2, 71.6, 126.7, 127.6, 128.4, 138.7, 155.9; <math>\alpha_{D}$ -5.54° (c = 5; CHCl₃). Found: C, 31.42; H, 3.07%. C₁₂^H NO₂I requires C, 31.47; H, 3.08%

(1'S*,5S*)-3-(1'-Phenyleth-1'-yl)-5-(acetoxymethyl)oxazolidin-2-one (5a)

To a solution of $(\underline{4a})$ (6.62 g; 20 mmol) in benzene (50 ml), Amberlyst A 26 in the Aco⁻ form (10 g; ~3.8 mequiv/g) was added and the suspension was refluxed for 6 h. The resin was then filtered off and washed with methanol (50 ml). After removal of the solvent, the residue was chromatographed on silica gel using cyclohexane:ethyl acetate (7:3) as the eluting solvent, to yield 3.7 g of ($\underline{5a}$) (70%) as white crystals: m.p. 95 °C; IR (nujol) 1750 and 1745 cm⁻¹; ¹H NMR (CDCl₃): δ 1.55 (d, 3H; J = 7 Hz), 2.0 (s, 3H), 3.25 (m, 2H, H_a and H_b), 4.2 (m, 2H), 4.6 (m, 1H, H_c), 5.15 (q, 1H; J = 7 Hz), 7.3 (m, 5ArH); ¹³C NMR (CDCl₃): δ 16.3, 20.6, 42.0, 51.5, 64.5, 70.5, 127.0, 127.9, 128.7, 139.2, 156.8, 170.4; α_{D} -8.76° (c = 5; CHCl₃). Found: C, 63.99; H, 6.52%. C₁₄H₁₇NO_A requires C, 63.87; H, 6.51%.

(1'S*,5S*)-3-(1'-Phenyleth-1'-yl)-5-(hydroxymethyl)oxazolidin-2-one (6a)

The compound (<u>5a</u>) (5.26 g; 20 mmol), dissolved in ethanol (20 ml), was stirred with dry K_2C_3 (2.76 g; 20 mmol) at room temperature for 6 h. The suspension was filtered off and the organic layer was evaporated in vacuo, to give (<u>6a</u>) in a quantitative yield as a white solid: m.p. 102 °C; IR (nujol) 3400 and 1750 cm⁻¹; ¹H NMR (CDCl₃): δ 1.5 (d, 3H; J = 7 Hz), 3.15 (t, 1H, H_b; J_{ab} = 9 Hz; J_{bc} = 9 Hz), 3.4 (dd, 1H, H_a; J_{ab} = 9 Hz; J_{ac} = 6 Hz), 3.7 (m, 2H), 3.9 (bs, 1H, 0H), 4.4 (m, 1H, H_c), 5.15 (q, 1H; J = 7 Hz), 7.3 (m, 5ArH); ¹³C NMR (CDCl₃): δ 16.3, 41.5, 51.5, 62.8, 73.9, 127.0, 127.8, 128.7, 139.5, 157.8; $\alpha_{\rm D}$ -28.4° (c = 5; CHCl₃). Found: C, 65.03; H, 6.80%. $C_{\rm 12}H_{\rm 15}N_4$ requires C, 65.03; H, 6.82%.

(5S)-5-(Hydroxymethyl)oxazolidin-2-one (8a)

A solution of lithium metal (210 mg; 30 mmol) in anhydrous ammonia (120 ml) was stirred at -60 °C and (<u>6a</u>) (2.21 g; 10 mmol) was added all at once, dissolved in THF:t-BuOH (55 ml; 10:1). After 3' the reaction was quenched by addition of solid NH₄Cl (1.6 g; 30 mmol), the ammonia was allowed to evaporate and the volatiles were removed in vacuo. The residue was suspended in pyridine (10 ml), AcCl (1.56 g; 40 mmol) was added at 0 °C and the mixture was stirred overnight. The reaction was then diluted with water (20 ml), extracted twice with CHCl₃ (2 x 50 ml) and the organic phase was washed with 1 M HCl (20 ml) and dried (Na₂SO₄). After removal of the solvent in vacuo, the

residue was chromatographed on silica gel using cyclohexane:ethyl acetate (1:9) as the eluting solvent, to give 1.12 g (70%) of the acetyl derivative ($\frac{7a}{2}$) as a colorless oil; IR (neat) 1745 cm⁻¹; ¹H NMR (CDCl₃): δ 2.1 (s, 3H), 3.3 - 3.9 (m, 2H), 4.4 (d, 2H), 4.8 (m, 1H), 6.7 (bs, 1H, NH). This compound (1.2 g; 7 mmol), dissolved in ethanol (10 ml), was stirred with dry $\frac{2}{2}$

(1.4 g; 10 mmol) at room temperature for 6 h. The suspension was then filtered off and the organic layer was evaporated in vacuo, affording (<u>8a</u>) in a quantitative yield as a colorless oil; IR (neat) 3400, 3300 and 1750 cm⁻¹; ¹H NMR (CD₃OD): **ð** 3.25 - 3.80 (m, 4H), 4.6 (m, 1H), 4.8 (bs, 2H, OH,NH); ¹³C NMR (CD₃OD): **ð** 42.9, 63.5, 78.5; $\alpha_{\rm D}$ +29.7°(c = 2.7; EtOH). Found: C, 41.09; H, 6.02%. C₄H₇NO₃ requires C, 41.03; H, 6.03%.

(5S)-5-(Methanesulfonyloxymethyl)oxazolidin-2-one (9a)

To a solution of $(\underline{8a})$ (1.1 g; 5 mmol) in pyridine (20 ml), was added at 0 °C methanesulfonyl chloride (1.37 g; 12 mmol) dissolved in CH_2Cl_2 (10 ml). After 3 h volatiles were removed in vacuo and the residue was chromatographed on silica gel using CH_2Cl_2 :methanol (95:5) as the eluting solvent, to afford 1.85 g of (<u>9a</u>) (95%) as white crystals: m.p. 113 °C; IR (nujol) 1750 cm⁻¹; ¹H NMR (CD_0OD): δ 3.15 (s, 3H), 3.4 - 3.8 (m, 2H), 4.2 - 4.6 (m, 2H), 4.8 (bs, 1H, NH), 5.0 (m, 1H); ¹³C NNR (CD_0OD): δ 37.4, 42.8, 70.8, 75.2; α_D +30.9° (C = 0.7, EtOH).

(5S)-5-(1-Naphthyloxymethyl)oxazolidin-2-one (10a)

To a solution of $(\underline{9a})$ (0.97 g; 5 mmol) in benzene:DMF (30 ml; 1:1), Amberlyst A 26 in the 1-naphtholate form (5 g; 3.8 mequiv/g) was added and the suspension was refluxed for 5 h. The resin was then filtered off and washed with methanol (20 ml), the solvent was removed in vacuo and the residue chromatographed on silica gel, using cyclohexane:ethyl acetate (1:1) as the eluting solvent, to give 1.1 g of (10a) (90%), as white crystals: m.p. 149 °C; IR (nujol) 1750 cm⁻¹; ¹H NMR (CD₃OD): δ 3.6 - 4.0 (m, 2H), 4.15 - 4.55 (m, 2H), 4.7 (bs, 1H, NH), 5.15 (m, 1H), 6.8 - 8.25 (m, 7ArH); ¹³C NMR (CD₃OD): δ 42.5, 69.1, 75.4, 105.2, 121.4, 123.0, 126.0, 126.9, 127.3, 128.4, 135.9, 155.7; $\alpha_{\rm D}$ +12.2° (c = 0.8; EtOH). Found: C, 68.99; H, 5.38%. C₁₄H₁₃N₃

requires C, 69.12; H, 5.39%.

(2S)-1-(1-Naphthyloxy)-3-aminopropan-2-01 (11a)

To a solution of LiOH (0.48 g; 20 mmol) in H₂O:methanol (10 ml; 9:1), (<u>10a</u>) (1.2 g; 5 mmol) was added and the mixture was refluxed for 3 h. The solution was allowed to reach room temperature and extracted with benzene. After drying (Na SO₄) and removal of the solvent, 1 g (95%) of (<u>11a</u>) was obtained as an oil; IR (neat) 3400 cm⁻¹; ¹H NMR (CD₃OD): δ 2.7 - 3.1 (m, 2H), 3.9 - 4.25 (m, 3H), 4.8 (bs, 3H, OH, NH₂), 6.85 - 8.45 (m, 7ArH); ¹³C NMR (CD₃OD): δ 45.4, 71.4, 71.8, 105.8, 121.3, 122.9, 126.0, 126.9, 127.3, 128.4, 135.9, 155.7; α _D -11° (C = 0.86, EtOH). Found: C, 72.01; H, 6.97%. C₁₃H₁₅NO₂ requires C, 71.87; H, 6.96%.

(2S)-1-(1-Naphthyloxy)-3-(isopropylamino)propan-2-ol (1a)

In a solution of (<u>11a</u>) (1.08 g; 5 mmol) in absolute ethanol (10 ml), acetone (0.44 g; 7.5 mmol) was slowly dropped and after 0.5 h NaBH $_{4}$ (0.37 g; 10 mmol) was directly added. The mixture was stirred for a further 0.5 h, then treated with 1 M HCl (6 ml) and successively with 1 M NaOH (3 ml). Volatiles were removed in vacuo and the residue was chromatographed on silica gel using

ethyl acetate:methanol (9:1) as the eluting solvent, affording 1.17 g of (<u>1a</u>) (90%) as white crystals: m.p. 72 °C; IR (nujol) 3400, 3300, 1590 and 1580 cm⁻¹; ¹H NMR (CD₃OD): $\dot{0}$ 1.1 (d, 6H; J = 6 Hz), 2.6 - 3.1 (m, 3H), 4.0 - 4.4 (m, 3H), 4.8 (bs, 2H, OH, NH), 6.7 - 7.8 (m, 7ArH); ¹³C NMR (CD₃OD): $\dot{0}$ 22.5, 22.7, 50.1, 51.0, 69.8, 72.1, 105.9, 121.4, 122.9, 126.0, 126.9, 127.3, 128.4, 135.9, 155.7; $\alpha_{\rm D}$ -10.14° (c = 0.7; EtOH)(Lit.⁷ -10.2° (c = 1.02; EtOH)). Found 74.19; H, 8.17%. C_{1.6}H_{2.1}NO₂ requires C, 74.1; H, 8.16%.

(1'S*,5R*)-3-(1'Phenyleth-1'-yl)-5-(acetoxymethyl)oxazolidin-2-one (5b)

Prepared as $(\underline{5a}):m.p.$ 86 °C; ¹H NMR (CDCl₃): **ð** 1.55 (d, 3H; J = 7 Hz), 1.85 (s, 3H), 2.9 (dd, 1H, H_b; J_{ab} = 9 Hz; J_{bc} = 6 Hz), 3.6 (t, 1H, H₄; J_{ab} = 9 Hz; J_{ac} = 9 Hz), 4.1 (m, 2H), 4.65 (m, 1H, H_c), 5.20 (q, 1H; J = 7 Hz), 7.3 (m, 5ArH); ¹³C NMR (CDCl₃) **ð** 16.4, 20.4, 41.7, 51.4, 64.2, 70.5, 126.9, 127.9, 128.7, 139.5, 156.9, 170.3; $\alpha_{\rm D}$ -118° (c = 5; CHCl₃).

(1'S*,5R*)-3-(1'Phenyleth-1'-y1)-5-(hydroxymethyl)oxazolidin-2-one (6b)

Prepared as $(\underline{6a})$: m.p. 113 °C; ¹H NMR $(CDCl_3)$: **\delta** 1.55 (d, 3H; J = 7 Hz), 3.0 (dd, 1H, H_b; $J_{ab} \approx$ 9 Hz; $J_{bc} = 6$ Hz), 3.5 (t, 1H, H_a; $J_{ab} \approx$ 9 Hz; $J_{ac} =$ 9 Hz), 3.6 (m, 2H), 3.7 (bs, 1H, OH), 4.55 (m, 1H, H_c), 5.15 (q, 1H; J = 7 Hz), 7.3 (m, 5ArH); ¹³C NMR $(CDCl_3)$: **\delta** 16.8, 41.8, 51.5, 62.6, 74.0, 126.8, 127.7, 128.8, 139.6, 157.8; α_{D} -104° (c = 1.77; CHCl₃).

(5R)-5-(Hydroxymethyl)oxazolidin-2-one (8b)

Prepared as $(\underline{8a})$: α_{p} -29.1° (c = 1; EtOH).

(5R)-5-(Methanesulfonyloxymethyl)oxazolidin-2-one (9b)

Prepared as (9a): $a_n -31.8^\circ$ (c = 0.43; EtOH).

(5R)-5-(Naphthyloxymethyl)oxazolidin-2-one (10b)

Prepared as (10a): $\alpha_{p} - 12.1^{\circ}$ (c = 0.46; EtOH).

(2R)-1-(1-Naphthyloxy)-3-aminopropan-2-ol (11b)

Prepared as $(\underline{11a}): \alpha_{n} + 10.7^{\circ} (c = 0.66; EtOH).$

(2R)-1-(1-Naphthyloxy)-3-(isopropylamino)propan-2-ol (1b)

Prepared as (<u>la</u>): α_{p} +10.2° (c = 0.76; EtOH)(Lit.⁷ +10.6° (c = 1.02, EtOH)).

(1'S*,5S*)-3-(1'Phenyleth-1'-yl)-5-(naphthyloxymethyl)oxazolidin-2-one (12a)

To a solution of $(\underline{4a})$ (3.3 g; 10 mmol) in benzene (30 ml), Amberlyst A 26 in the naphtholate form (5 g; ~ 3.8 mequiv/g) was added and the suspension was refluxed for 2 h. The resin was then filtered off and washed with methanol (50 ml). After removal of the solvent, the residue was chromatographed on silica gel using cyclohexane:ethyl acetate (8:2) as the eluting solvent, to yield 3.5 g of (<u>12a</u>) (75%) as an oil; IR (neat) 1750 cm⁻¹; ¹H NMR (CDCl₃): δ 1.55 (d, 3H; J = 7 Hz), 3.3 (t, 1H, H_b; J = 9 Hz; J = 9 Hz), 3.55 (dd, 1H, H_a; J = 9 Hz; J = 6 Hz), 4.25 (d, 2H; J = 5 Hz), 4.75 (m, 1H, H_c), 5.3 (q, 1H; J = 7 Hz), 6.9 - 8.3 (m, 7ArH); ¹³C NMR (CDCl₃): δ 16.3, 42.3, 51.6, 68.3, 71.0, 104.9, 125.5, 125.6, 126.6, 127.0, 127.5, 128.0, 128.8; $\alpha_{\rm D}$ +16.6° (c = 1; CHCl₃).

(1'S*, 5R*)-3-(1'-Phenyleth-1'-y1)-5-(naphthyloxymethyl)oxazolidin-2-one (12b)

Prepared as $(\underline{12a})$ from $(\underline{4b})$; ¹H NMR (CDCl₃): **ô** 1.55 (d, 3H; J = 7 Hz), 3.2 (dd, 1H, H_b; J = 9 Hz; J = 6 Hz), 3.6 (t, 1H, H_a; J_{ab} = 9 Hz; J_{ac} = 9 Hz), 4.05 (d, 2H; J = 5 Hz), 4.8 (m, 1H, H_c),

5.25 (q, 1H; J = 7 Hz), 6.4 - 8.0 (m, 7ArH); 13 C NMR (CDCl₃): **\dot{o}** 16.5, 42.1, 51.6, 67.9, 71.2, 104.9, 125.4, 125.6, 126.5, 127.0, 127.3, 127.9, 128.7; $\alpha_{\rm p}$ -120° (c = 1; CHCl₃).

REFERENCES AND NOTES

- (a) G. Cardillo, M. Orena, S. Sandri, C. Tomasini, Tetrahedron, 1985, <u>41</u>, 163
 (b) G. Cardillo, M. Orena, S. Sandri, J. Org. Chem., 1986, <u>51</u>, 713
- (a) J.C. Sheehan, R.E. Chandler, J. Am. Chem. Soc., 1961, <u>83</u>, 4795
 (b) R.G. Hiskey, R.C. Northrop, J. Am. Chem. Soc., 1961, <u>83</u>, 4798
 (c) T. Hayakawa, K. Shimizu, Bull. Chem. Soc. Jap., 1973, <u>46</u>, 1886
 (d) T. Taguchi, A. Kawara, S. Watanabe, Y. Oki, H. Fukushima, Y. Kobayashi, M. Okada, K. Ohta, Y. Iitaka, Tetrahedron Lett., 1986, <u>27</u>, 5117
- 3. (a) Y. Nagao, T. Kumagai, S. Yamada, E. Fujita, Y. Inoue, Y. Nagase, S. Aoyagi, T. Abe, J. Chem. Soc., Perkin I, <u>1985</u>, 2361
 (b) S. Knapp, M. Sebastian, H. Ramanathan, P. Bharadwaj, J.A. Potenza, Tetrahedron, 1986, 42, 3405
- (a) H.W. Pauls, B.J. Fraser-Reid, J. Am. Chem. Soc., 1980, <u>102</u>, 3956
 (b) P.A. Bartlett, D.J. Tanzella, J.F. Barstow, Tetrahedron Lett., 1982, <u>42</u>, 619
 - (c) L.E. Overman, R.J. McCready, Tetrahedron Lett., 1982, 42, 4887
 - (d) S. Kobayashi, T. Isobe, M. Ohno, Tetrahedron Lett., 1984, 44, 5079
- 5. The reductive cleavage directly performed on the naphthyl derivatives <u>12a</u> and <u>12b</u> leads to products where a concomitant reduction of the aromatic ring has occurred.
- 6. J.E. Saavedra, J. Org. Chem., 1985, 50, 2271
- 7. R. Howe, R.G. Shanks, Nature, 1973, 210, 1336
- 8. J.A. Dale, H.S. Mosher, J. Am. Chem. Soc., 1973, 95, 512
- 9. (a) B.M. Trost, J.L. Belletire, S. Godleski, P.G. McDougal, J.M. Balkovec, J.J. Baldwin, M.E. Christy, G.S. Ponticello, S.L. Varga, J.P. Springer, J. Org. Chem., 1986, <u>51</u>, 2370
 (b) S. Futagawa, T. Inui, T. Shiba, Bull. Chem. Soc. Jap., 1973, <u>46</u>, 3308
 (c) M.B. Eleveld, H. Hogeveen, E.P. Schudde, J. Org. Chem., 1986, <u>51</u>, 3635

<u>Acknowledgement</u>. We thank C.N.R., Rome, for a grant (Progetto strategico Area 04)